
Class Hierarchy
and Interfaces

David Greenstein

Monta Vista High School

Inheritance
• Inheritance represents the IS-A relationship between

objects.

an object of a subclass IS-A(n) object of the superclass

Superclass
(Base class)

Subclass
(Derived class)

The Subclass

extends

the Superclass

Class Hierarchy
• Using inheritance, a programmer can define a hierarchy of

classes.

Class Hierarchy (cont)
• Hierarchy helps reduce duplication of code by  

factoring out common code from similar classes into a
common superclass.

abstract class Animal
abstract eats()

dateBorn()

abstract class Reptile
shedSkin()

locomotion()

(concrete) class Snake
scaleType()
hasBite()

(concrete) class Horse
eats()

coatTexture()

abstract class Mammal
abstract growHair()
abstract getsFood()

Class Hierarchy (cont)
• Hierarchy helps reduce duplication of code by letting you

write more general methods in client classes.

public void dateBorn(Horse h)
{
}
public void dateBorn(Dog d)
{
}

public void dateBorn(Mammal m)
{
}

Works for a Horse

or Dog or

any Mammal

Abstract Classes
• Some superclasses are generic classes used as a basis

for other subclasses. These are called abstract classes  
(e.g. Animal).

abstract class Animal
abstract eats()

dateBorn()

abstract class Reptile
shedSkin()

locomotion()

(concrete) class Snake
scaleType()
hasBite()

(concrete) class Horse
eats()

coatTexture()

abstract class Mammal
abstract growHair()
abstract getsFood()

Abstract Classes (cont)
• Abstract classes are closer to the root of the hierarchy;

they describe more abstract objects.

• Abstract classes must define one or more abstract
methods.

• Conversely, any class that has one or more abstract
methods must be abstract.

public abstract class Animal {
 …
 public abstract Date dateBorn();
 …
}

An abstract

method

An abstract

class

public abstract class Animal {
 …
 public abstract Date dateBorn();
 …
}

Abstract Classes (cont)
• Abstract classes are not instantiated as objects (no new)

because they are too general.

• An abstract class can still define constructors  
(ie. implement them).

• A concrete class is one which has no abstract methods.

Therefore, the class cannot be labeled abstract.

• An abstract class can be derived (extend) from a concrete
class.

An abstract

method

An abstract

class

public abstract class Animal {
 …
 public abstract Date dateBorn();
 …
}

Abstract Classes (cont)
• If the superclass and subclass are both abstract, then the subclass

implicitly inherits all of the abstract methods of the superclass.

• An abstract class may or may not implement the abstract methods
of its superclass.

• If not implemented by the abstract class(es), eventually a derived
class in the hierarchy must implement the abstract method.

public abstract class Mammal extends Animal {
 …
 /* abstract dateBorn() not listed */
 …
} public class Horse extends Mammal {

 …
 public Date dateBorn() { }
 …
}

abstract dateBorn()

is inherited

Concrete class

inherits and

must implement

example in which

abstract dateBorn()

not implemented

public abstract class Animal {
 …
 public abstract Date dateBorn();
 …
}

Abstract Methods
• Abstract methods are not implemented so they have no

body, just a signature with a semicolon.

• Abstract methods provide the compiler an opportunity
for additional error checking.

Just

signature;

no body

• Abstract fields or constructors???? DO NOT EXIST!!!!

Abstract Classes (cont)
SWING

Abstract

classes

SWING

Concrete

classes

The Object Class
• The superclass of all classes is the Object class from the

java.lang package.

• The Object class is a concrete class.

public class Object
{
 public String toString {...}
 public boolean equals (Object other) {... }
 public int hashCode() { ... }

 // a few other methods
 ...
}

Methods

overridden

as

necessary

public class MyClass extends Object
{
 // a few fields

 // maybe a constructor defined

 // a few other methods
 ...
}

The Object Class (cont)
• All classes extend from the Object class, even the

classes you write.

• If not explicitly coded, the class extends Object.

If not explicitly

mentioned,

the compiler

“extends Object”

Constructor Hierarchy
• Constructors are invoked through a superclass chain -  

up the inheritance hierarchy. (not inherited)

Mammal

Horse
super()

super()

• If no constructor is explicitly defined in a class, then 
a no-args constructor is generated automatically by the
compiler.

Object
super()

Animal

Implicit Constructor
• The no-args constructor generated by the compiler calls

the constructor of the superclass (super()).

• Warning! The superclass must have a no-args
constructor or a syntax error is generated.

public class MyClass extends MySuper
{
 // a few fields

 /* no constructor defined */

 // a few other methods
 ...
}

public class MyClass extends MySuper
{
 // a few fields

 public myClass() { super(); }

 // a few other methods
 ...
}

What the

compiler

inserts

Your code

Explicit Constructor
• If you explicitly write a constructor in a class, then the

compiler will not generate a constructor, not even a  
no-args constructor!

• But inside your constructor, a super() call might get
inserted by the compiler if you do not explicitly include it.

If you put super() in your first line, then the compiler adds nothing.

If you do not put super() in your first line, then the compiler 
adds a no-args super() automatically.

public class MyClass extends MySuper
{
 // One explicit constructor
 public myClass(int x) {
 …
 }

}

public class myClass extends MySuper
{
 // One explicit constructor
 public myClass(int x) {
 super();
 …
 }

}

Compiler

inserts

a super()

call

super Constructor Call
• Only a constructor can call a super constructor.

• By default, one of the superclass’s constructors is  
always called. (with the exception of the Object class)

• If you explicitly put a super in your constructor, it  
must be on the first line of the constructor.

• The super method can have parameters. Whatever
parameters are in the super call, there must be a
superclass constructor with the same signature.

• If you do not explicitly call super, then the superclass’s  
no-args constructor is called by default.

super Method Call
• Subclass methods can call superclass methods using  

“super.” (dot) notation.

• A “super.” method call can be called anywhere inside a subclass
method and it can be done one or more times.

• Superclass method calls only go up one level of hierarchy.  
There is no such thing as super.super!!

public class MySuper
{
 ...
 public void method1(int a) {
 ...
} public class MyClass extends MySuper

{
 ...
 public void method1(int a) {
 String str;
 super.method1(a);
 ...
}

Even overridden

methods can be

called

super. notation

Polymorphism
• Ensures that the correct method is called for an object of

a specific type, even when that object is disguised as a
reference to a more generic type, that is, the type of the
object’s superclass or some ancestor higher up the
inheritance line.

• Once you define a common superclass, polymorphism is
just there ⎯ no need to do anything special.

 // client class
 Mammal mammal1 = new Lion();
 Mammal mammal2 = new Horse();

 mammal1.eats();

 mammal2.eats();

public abstract class Mammal
{
 public void eats() {
 …
 }
}

Polymorphism (cont)
• For example, subclasses Lion and Horse each extend the Mammal

class.

• The identifier is Mammal, but (“under the hood”) eats() still executes the
correct Lion version.

public class Lion extends Mammal
{
 public void eats() {
 …
 }
}

public class Horse extends Mammal
{
 public void eats() {
 …
 }
}Uses Lion’s

eats method
 // client class
 Mammal mammal1 = new Lion();
 Mammal mammal2 = new Horse();

 mammal1.eats();

 mammal2.eats();

Uses Horse’s

eats method

Non-static vs. Static Methods

public class Super
{
 public static void staticMethod() { … }
 public void nonstaticMethod() { … }
 …
}

 Super super1 = new Sub();
 Sub sub1 = new Sub();

 super1.staticMethod();
 sub1.staticMethod();

 sub.staticMethod();
 sub.nonstaticMethod(); public class Sub extends Super

{
 public static void staticMethod() { … }
 public void nonstaticMethod() { … }
 …
}

Client class
Identifier

Data type

• Static methods are “bound” to the identifier’s data type
(ie. class).

The fields and methods are determined at compile time.

Polymorphism
does not work here!!

• Static methods are “bound” to the identifier’s data type
(ie. class).

The fields and method types are determined at compile time.

• Non-static methods are “bound” to the object’s data type.

The field and method types are determined during execution  
(ie. the “new” object’s data type).

public class Super
{
 public static void staticMethod() { … }
 public void nonstaticMethod() { … }
 …
}

 Super super1 = new Sub();
 Sub sub1 = new Sub();

 super1.staticMethod();
 sub1.staticMethod();

 super1.nonstaticMethod();
 sub.nonstaticMethod(); public class Sub extends Super

{
 public static void staticMethod() { … }
 public void nonstaticMethod() { … }
 …
}

Client class

Object’s

Data type

Polymorphism
works here!!

Non-static vs. Static Methods

public interface Herd {
 …
 void setHerdSize(int num);
 int getHerdSize();
 …
}

Interfaces
• An interface in Java is like an abstract class, except:

 it has no constructors.

all of its methods are implicitly public abstract
all of its fields are implicitly public static final

Implied

public abstract

methods

Interfaces (cont)
• A concrete class that implements an interface must

implement every method mentioned in the interface.

• Like abstract methods, interfaces provide the compiler
an opportunity for additional error checking.

public interface Herd {
 …
 void setHerdSize(int num);
 int getHerdSize();
 …
}

public class Horse implements Herd {
 …
 public void setHerdSize(int num)
 { … }
 public int getHerdSize()
 { … }
 …
}

Class Horse must implement

all the abstract methods

mentioned in Herd

Interfaces (cont)
• Abstract classes can also implement interfaces.

• An abstract class is not obligated to implement the abstract
methods of the interface, but they are allowed to implement.

• Concrete classes must implement all abstract methods
inherited from their superclass (extends) and their interfaces
(implements).

public interface Herd {
 …
 void setHerdSize(int num);
 int getHerdSize();
 …
}

public abstract class Mammal implements Herd {
 …
 public void setHerdSize(int num){ … }
 // int getHerdSize() passed to derived class
 …
}

Abstract classes may

implement the method or let

it pass to derived class.

Interfaces (cont)
• Interfaces cannot extend classes nor implement other

interfaces.

• Interfaces are not in the hierarchy of classes.

• On the other hand, interfaces can extend other
interfaces creating their own hierarchy.

Interfaces (cont)
• Concrete classes must implement all the abstract methods of

the interface.

• Abstract classes do not have to implement the abstract
methods of the interface.

public class MyPanel implements MouseListener,
 MouseMotionListener {
 …
 public void mouseClicked(MouseEvent e) { … }
 public void mouseEntered(MouseEvent e) { … }
 …
}

public interface MouseListener
 extends EventListener {
 …
 void mouseClicked(MouseEvent e);
 void mouseEntered(MouseEvent e);
 …
}

Abstract

methods

Implemented

(concrete)

methods

public interface MouseMotionListener
 extends EventListener {
 …
 void mouseDragged(MouseEvent e);
 …
}

Interfaces (cont)
• Concrete and abstract classes can implement more

than one interface.

public class MyPanel implements MouseListener,
 MouseMotionListener {
 …
 public void mouseClicked(MouseEvent e) { … }
 public void mouseDragged(MouseEvent e) { … }
 …
}

public interface MouseListener
 extends EventListener {
 …
 void mouseClicked(MouseEvent e);
 void mouseEntered(MouseEvent e);
 …
}

Interfaces (cont)
• Like an abstract class, an interface supplies a secondary

data type to objects of a class that implements that
interface.

• You can declare variables and parameters of an interface
type.

• Polymorphism fully applies to objects disguised as
interface types.

 Herd flicker = new Horse();

public abstract class Animal
{
 public abstract void eats();
 …
}

Overriding Methods
• To override a method is to redefine (reimplement) a

superclass’ method in a subclass using the same
signature.

public abstract class Mammal extends Animal
{
 public void eats() {
 …
 }
}

public class Lion extends Mammal
{
 public void eats() {
 …
 }
}

public class Horse extends Mammal
{
 public void eats() {
 …
 }
}

Superclass

implementation

OverriddenOverridden

Questions?

